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Abstract

Downy mildew, commercially the most important disease of spinach, is caused by the obligate oomycete Peronospora effusa. In the past
two decades, new pathogen races have repeatedly overcome the resistance used in newly released cultivars, urging the need for more
durable resistance. Commercial spinach cultivars are bred with major R genes to impart resistance to downy mildew pathogens and are
effective against some pathogen races/isolates. This work aimed to evaluate the worldwide USDA spinach germplasm collections and
commercial cultivars for resistance to downy mildew pathogen in the field condition under natural inoculum pressure and conduct
genome wide association analysis (GWAS) to identify resistance-associated genomic regions (alleles). Another objective was to evaluate
the prediction accuracy (PA) using several genomic prediction (GP) methods to assess the potential implementation of genomic selection
(GS) to improve spinach breeding for resistance to downy mildew pathogen. More than four hundred diverse spinach genotypes
comprising USDA germplasm accessions and commercial cultivars were evaluated for resistance to downy mildew pathogen between
2017–2019 in Salinas Valley, California and Yuma, Arizona. GWAS was performed using single nucleotide polymorphism (SNP) markers
identified via whole genome resequencing (WGR) in GAPIT and TASSEL programs; detected 14, 12, 5, and 10 significantly associated
SNP markers with the resistance from four tested environments, respectively; and the QTL alleles were detected at the previously
reported region of chromosome 3 in three of the four experiments. In parallel, PA was assessed using six GP models and seven unique
marker datasets for field resistance to downy mildew pathogen across four tested environments. The results suggest the suitability
of GS to improve field resistance to downy mildew pathogen. The QTL, SNP markers, and PA estimates provide new information in
spinach breeding to select resistant plants and breeding lines through marker-assisted selection (MAS) and GS, eventually helping to
accumulate beneficial alleles for durable disease resistance.

Introduction
Spinach (Spinacia oleracea L.) is an important cool-season leafy
vegetable crop. The US is the second-largest producer of spinach
after China. The demand for fresh market spinach has doubled
in the last decade, with current production of 0.44 million tonnes
[1]. More than 90% of US spinach is produced from March through
October in Salinas Valley, CA, and warmer regions from November
to March in Yuma, AZ, providing a yearly supply of fresh produce.
Organic production comprises around half of the total spinach
production in the US.

Downy mildew (DM), the most important disease of spinach,
is caused by an obligate oomycete Peronospora effusa, which often
causes a complete crop loss as infected leaves are not marketable.
A total of 19 unique races and many isolates of P. effusa have
been reported [2–5]. In the past two decades, regular outbreaks
of new races are repeatedly overcoming the race-specific R
genes in spinach cultivars. Sets of R loci (RPF) are hypothesized
to control resistance to downy mildew pathogen in spinach
[6]. Spinach commercial cultivars are hybrids containing a

combination of the major RPF loci from male and female parents
that are effective against different races of P. effusa, a traditional
practice of gene pyramiding. Past efforts mapped the RPF1, RFP2,
and RPF3 locus to chromosome 3 [7, 8]. Based on the SpoV1
genome assembly annotation, five disease resistance genes
adjacent to the RPF loci were reported as potential downy mildew
resistance candidate genes [9]. The RPF1 locus was narrowed to
0.89 Mb [10] and between 0.39 to 1.23 Mb region of chromosome 3
Spov1 assembly [11]. Another study mapped the RPF3 resistance
region in cultivar Whale to 0.57 Mb of Spov1 Chromosome 3,
spanning between 0.66–1.23 Mb [12]. These recent investigations
reported the most likely candidate genes involved in providing
disease resistance based on the predicted functions of the protein
coding sequence in the genome assembly [10–12]. These results
present the progress in developing markers associated or linked
to resistance to downy mildew pathogen and available molecular
resources to implement marker assisted selection (MAS) in
spinach. The new spinach genome assembly of inbred line
Monoe-Viroflay was recently generated and several important
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spinach traits were mapped including resistance to downy mildew
pathogen in 0.25–1.55 Mb region of chromosome 3 containing
six genes encoding NBS-LRR proteins and five encoding receptor
kinases, known to provide disease resistance in plants.

Plant pathogens continuously evolve and overcome the race-
specific resistance conferred by major genes, as described in
resistance to leaf rust in wheat [13] and downy mildew in
grape [14]. The widespread use of a dominant resistant gene
increases directional selection pressure and a high mutation
rate of pathogen favors evolution from avirulent to virulent
pathotypes, as reviewed by McDonald and Linde (2002) [15]. On
the other hand, QTLs, governed by alleles at multiple genomic
regions, are more durable as multiple mutations, which are
less probable, are needed to overcome the polygenic resistance
[16]. The durability of polygenic resistance was experimentally
demonstrated in pepper using potato virus Y (PVY) isolates,
where the resistance governed by a major gene (pvr23) broke
down at a higher frequency than when the same gene (pvr23)
was introgressed in combination with a partial resistance QTL
[17]. Reduced multiplication potential of PVY, multiple mutations
required for the virus to become virulent, and slow selection of the
virulent PVY pathotypes were reported as the mechanism for the
durability of (pvr23) genes in the presence of QTL against PVY [18].
Genetic resistance differs between qualitative and quantitative
resistance; the former is more straightforward to introgress
and eased by the MAS approach but is vulnerable to resistance
breakdown, while the latter is more complex from breeding
perspectives. Genomic selection (GS) will better fit the breeding
program when the resistance breeding effort prioritizes many
minor genes instead of or in combination with major R genes
[19]. The regular emergence of new races of P. effusa breaking
down the known RPF genes highlights the need to identify and
utilize quantitative resistance to achieve durable resistance for
sustainable spinach production. Quantitative resistance does not
entirely impede disease development but reduces the severity and
is often effective against multiple pathogen races. Using minor
resistance alleles on top of major R genes may be more effective
in disease management and minimizing disease spread, which is
our general hypothesis and supposition of this work.

Genome wide association studies (GWAS) are used to identify
genetic variants associated with the trait of interest in natural
and segregating populations, and the resolution of genetic asso-
ciations depends on linkage disequilibrium (LD) between markers
and the trait. GWAS has been employed to map disease resistance
in many crops, including resistance to downy mildew pathogen in
spinach [11, 12, 20], lettuce [21], and other crops [22–25]. Spinach, a
cross-pollinating crop, shows faster LD decay due to its heterozy-
gosity, and association analysis with a denser marker coverage is
expected to map the trait at a higher resolution. GS predicts the
breeding value of complex traits in the test population by assess-
ing the effect of genome wide markers, facilitates the selection
of superior genotypes without phenotyping and field tests, and
accelerating breeding cycles [26–29]. In the past two decades, GS
has been reported in several horticultural and agronomic crops
for qualitative and quantitative traits in biparental, multiparent,
and natural populations [30–35], including spinach for white rust
resistance [36]. Several parametric (rrBLUP-ridge regression BLUP,
Bayes A, Bayes B, Bayesian LASSO) and non-parametric (RKHS-
Reproducing Kernel Hilbert Space, RF- Random Forest) models are
optimized to increase prediction accuracy in plant and animal
breeding programs. These models have a different assumption for
the trait inheritance pattern and the marker effects distribution,
so their prediction ability varies depending on the architecture

of traits and the number and effect sizes of QTLs. Some models
perform better for traits controlled by a few major QTLs, while
others are more suited for traits controlled by many minor alleles.
Some known factors affecting the prediction accuracies are trait
heritability, the number of QTLs, training and testing population
size, genetic diversity within the population, relatedness among
genotypes in the training and testing set, and the number of
markers and LD patterns [19, 32, 37–39].

Variable inoculum pressure and the presence of multiple
races are the main hindrances to large-scale field disease
screening. Despite the potential challenges, a diverse set of
spinach germplasm was evaluated under field conditions at
two locations: Yuma, AZ, and Salinas, CA. Field evaluation
does not allow to control predominance of pathogen isolates,
and the disease resistance screening involves mixed pathogen
populations and is expected to detect race non-specific broad-
spectrum resistance. The objectives of the present study were
to evaluate the worldwide spinach germplasm collection and
commercial cultivars for resistance against downy mildew
pathogen in the field condition under natural inoculum pressure
and to perform GWAS to identify genomic regions associated with
field resistance. Further, the potential performance of GS was
assessed for the first time using six different GP methods and
several marker subsets on resistance to downy mildew pathogen
in the spinach GWAS panel to evaluate prospects of incorporating
the GS to improve resistance. In this study, disease screening in the
field conditions aimed to discover and uncover race non-specific
resistance loci or the QTLs against the downy mildew pathogen
in the real world under natural disease pressure and to identify
new genomic regions providing resistance.

Results
Phenotype
This study screened 434 spinach genotypes collected initially from
34 countries for resistance to downy mildew pathogen under nat-
ural infestation in four different environments (Supplementary
Table 1). Spinach accessions were grown in a row along with com-
mercial cultivars and susceptible cultivar Viroflay in the border
row (Fig. 2a, b). The adaxial (Fig. 2c) leaf surface shows symptoms
and the abaxial (Fig. 2d) leaf surface shows both signs and symp-
toms of downy mildew pathogen that were scored for resistance-
susceptibility as detailed previously. Downy mildew disease scores
were available for 359, 363, 377, and 387 spinach accessions for
CA2017, CA2018SJB, AZ2018, and AZ2019 trials. The susceptible
cultivar Viroflay planted in the border row was moderate to
severely infected in all evaluated environments. The predomi-
nance of races and isolates of the pathogen varied across tested
environments, as reported in annual varieties trials performed in
the same locations [51–53]. The environment effect and genotype
x environment effect were significant (P < 0.01) as observed in
the scatter plot of disease response between environments, even
though the Pearson correlation of mean disease response across
environments ranged between 0.03–0.52, showing low to moder-
ate correlations between pairs of field trials (Fig. 3a). The spinach
accessions are genetically heterogeneous, showing segregation
and variation within accessions. Thus, disease responses from
each location were analyzed separately to account for environ-
mental variation, particularly considering variable pathogen pop-
ulation dynamics. The genotype effect was significant (P < 0.01)
on ANOVA for downy mildew disease response in all four environ-
ments (field trials). Phenotypic analysis was performed assuming
normal distribution to independently estimate the BLUP values
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Figure 1. (a) Principal component analysis (PCA) of 434 spinach accessions (b) Genetic relatedness among 434 spinach accessions determined by the
neighbor-joining methods (c) Genome-wide linkage disequilibrium (LD) decay pattern of spinach measured by r2 between SNPs pairs.

Table 1. Phenotypic distribution and broad-sense heritability of downy mildew field resistances across four environments

Environment Heritability Mean Min Max SD

CA2017 0.18 25.5 20.9 32.4 2.28
CA2018SJB 0.53 32.4 16.4 51.8 6.85
AZ2018 0.29 56.1 31.9 76.0 10.90
AZ2019 0.78 35.3 7.6 63.8 11.61

for each environment and was used as in GWAS and GS. The
BLUP histograms of the disease responses across the experimental
locations (Fig. 3b) show substantial genetic variations among the
genotypes in each trial. Disease severity across the environment
ranged from 7.6 to 76.0, with the mean disease severity of 35.3,
56.1, 25.5, and 32.4 for AZ2019, AZ2018, CA2017, and CA2018SJB,
respectively (Table 1, Supplementary Table 1). The broad-sense
heritability calculated on a genotype-mean basis showed moder-
ate to high heritability across locations ranging from 0.18 to 0.78
with a mean of 0.45 (Table 1).

The top 10% of resistant and susceptible accessions from each
environment showing stability across environments are shown in
Fig. 4. Still, these selected genotypes were not completely stable
and show genotype x environment interactions, as evident in the
heat map (Fig. 4). However, the disease scores of these tolerant
accessions were lower than the mean disease scores in individual
locations (Supplementary Table 1). The accessions, PI 433210, PI
648936, PI 274046, CPPSIH_3_03 (Califlay), PI 173809, PI 173130, PI
360894, NSL 68264, CPPSIH_3_06 (Boeing), NSL 184379, PI 648950,
PI 169679, CPPSIH_3_09 (Whale), NSL 68263, NSL 32678, PI 169026,
NSL 81328, PI 166366, PI164965, PI 165560, PI 677109, PI 169668, PI

179591, PI 167194, PI 531456, and NSL 81329 showed high tolerance
to downy mildew pathogen in more than two tested environ-
ments (Fig 4). In addition, the commercial cultivars Alcor, Galah,
Java, Magnetic, Parakeet, Platypus, PV_1444, PV_1449, PV_1452,
_PV_1477, Finwhale, and Tasman showed high resistance in both
AZ2018 and AZ2019 environments. These consistently tolerant
accessions are potentially useful as parents in breeding programs.

Genetic diversity
Of the 434 accessions, 416 were assigned to the Q1 cluster and
18 were grouped into the Q2 cluster (Supplementary Table 1,
Fig. 1a,b). The accessions from Asian countries, mainly China,
and a single accession from Nepal, South Korea, Afghanistan,

Thailand, and Türkiye were grouped into the Q2 sub-population.
All other accessions from the remaining countries, including
commercial cultivars, were grouped into the Q1 sub-population.
The first two PCs used in association analysis possibly control
the false positives and negatives, as shown in the QQ plots
(Fig. 5, 6). The pairwise LD correlation coefficient dropped to half
its maximum r2 at about 13.4 Kb (r2 = 0.391) (Fig. 1c), which is
longer than previous reports in spinach [9, 54], possibly extended
because of the use of a thinned set of SNPs plus GWAS associated
SNPs.

Association analysis and candidate gene search
The first step GWAS was performed with 2.91 million SNPs in
TASSEL and identified 12 098 significant SNPs with LOD value >4
across different TASSEL models based on downy mildew disease
scores from all four experiments (Supplementary Table 2 reports
the number of SNP retained and the selection threshold from each
environment). GWAS analysis was performed for the second time
using the 88 682 SNP (significant SNPs identified from the first
GWAS plus the 10 Kb thinned SNP) by implementing FarmCPU
and BLINK models in GAPIT3. If it had a LOD value >6.25 in one
of the two models, the SNP marker was selected and reported as
a significant marker associated with resistance to downy mildew
pathogen in this study (Table 2, Fig. 5,6).

The quantile-quantile (QQ) plot distribution of the observed vs.
expected LOD values showed a large deviation from the expected
line implying associations of the SNP marker with resistance
to downy mildew pathogen (Fig. 5,6). A total of 14, 12, 5, and
10 SNPs were significantly associated with resistance to downy
mildew pathogen from CA2017, CA2018SJB, AZ2018, and AZ2019
experiments, respectively (Table 2). The associated SNP showed
R-square values ranging from 0.02 to 14.40 with an average of
5.52% (Table 2). Several hundred SNPs were associated with other
models, including the GLM model in GAPIT (data not shown),
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Figure 2. Downy mildew field trail (2a,b). Downy mildew disease symptoms in the adaxial leaf surface (2c) and signs of the pathogen in the abaxial
leaf surface (2d) in the field-grown spinach.

Figure 3. Frequency distribution of downy mildew disease response among the worldwide spinach germplasm accessions evaluated in four
environments during 2017–2019. Trials were conducted in Salinas, CA in 2017 (CA2017), San Juan Bautista, CA in 2018 (CA2018SJB), and Yuma, AZ in
2018 (AZ2018) and 2019 (AZ2019).

but the LOD values and R2 values are reported only for SNPs
association identified by the BLINK and FarmCPU models.

SNP markers associated with the field resistance from four
GWAS panels were distributed on all six spinach chromosomes
(Table 2). From the CA2017 experiment, SNP located on chro-
mosomes 1, 3, 4, 5, and 6 were associated with the resistance.
SNPs from chromosomes 1, 2, 3, 5, and 6 were associated
with resistance from the CA2018SJB trial. Similarly, from the

AZ2018 trial, SNP located on chromosomes 1, 3, and 4 were
associated with the resistance. And for the AZ2019 trial, SNP from
chromosomes 1, 2, 3, 4, and 6 were associated. Two SNP markers
(Chr3_1 164 540 and Chr 4_159 307 591) showed strong resistance
with LOD > 10, indicating major resistance. Of the two SNP
markers, Chr3_1 164 540 showed LOD > 11 on BLINK and > 6 on
the FarmCPU models from CA2017 and Chr 4_159 307 591 showed
LOD > 12 in BLINK and LOD =1.99 in FarmCPU models from
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Figure 4. Heatmap visualization of downy mildew disease response from each environment. The environment is noted on the x-axis and the spinach
accessions are listed on the y-axis. The color code on the y-axis shows the disease severity scale.

AZ2019, and the former was stable in both BLINK and FarmCPU
models while the latter was not stable in FarmCPU models.

SNP markers Chr3_943 549, Chr3_1 063 790, and Chr3_116450
associated in CA2017, AZ2018, and AZ2019 environments lying
between 0.94 to 1.6 Mb of chromosome 3 were within the major
DM R gene regions as reported in previous studies [7, 8, 10–12].
The SNP Chr4_177 858 334 identified here was 2.53 Mb away

from one of the peak SNP associated with resistance to downy
mildew pathogen in the report of Cai et al. (2021) [20]. None of
the associated SNP markers overlapped between environments in
this study, although some associated in one environment were
close to the SNP associated in other environments. The SNP
Chr1_103 791 151 associated in CA2017 is physically 5.04 Mb away
from Chr1_108 831 990 associated in CA2018SJB. Chr3_106 700 307
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Table 2. List of significantly associated SNP markers with downy mildew field resistance in spinach evaluated at multiple
environments. Spinach germplasm and cultivars were screened for resistance in Salinas Valley, CA and Yuma, AZ, for two years.
Genome wide association analysis (GWAS) was performed using 88 682 whole genome resequencing (WGR) generated SNP markers

SNPa Chr Position Allelesb LOD (-log10P) value in GAPIT 3c GLM R2 MAF (%)

BLINK FarmCPU GLM

Environment: Salinas, CA (CA2017)
Chr1_92 542 469 1 92 542 469 C/T 1.82 8.46 6.18 6.61 0.18
Chr1_103 791 151 1 103 791 151 T/C 9.41 5.69 6.85 7.43 0.22
Chr3_943 549 3 943 549 T/C 9.62 3.14 5.29 5.52 0.28
Chr3_7 984 023 3 7 984 023 C/T 8.07 2.02 5.67 5.99 0.20
Chr3_49 033 516 3 49 033 516 C/A 9.93 7.56 7.78 8.60 0.17
Chr3_101 998 183 3 101 998 183 G/A 7.67 2.51 3.13 2.99 0.24
Chr3_106 700 307 3 106 700 307 A/C 7.93 3.02 6.10 6.51 0.08
Chr3_140 181 355 3 140 181 355 C/T 8.52 5.08 2.85 2.66 0.12
Chr4_12 237 589 4 12 237 589 C/T 7.82 5.53 5.03 5.21 0.20
Chr4_159 307 591 4 159 307 591 C/T 11.43 6.12 5.36 5.61 0.12
Chr4_163 409 535 4 163 409 535 T/C 8.61 5.29 3.57 3.49 0.10
Chr5_87 443 309 5 87 443 309 T/A 9.06 5.44 6.14 6.55 0.04
Chr5_107 554 240 5 107 554 240 C/A 8.33 5.8 6.29 6.74 0.16
Chr6_35 831 188 6 35 831 188 G/A 6.46 4.05 1.29 0.98 0.11
Environment: San Juan Bautista, CA (CA2018SJB)
Chr1_32 239 064 1 32 239 064 C/T 7.23 3.87 3.96 3.93 0.23
Chr1_73 968 900 1 73 968 900 C/A 4.24 6.49 8.23 9.13 0.32
Chr1_108 831 990 1 108 831 990 A/G 2.22 7.74 0.12 0.02 0.09
Chr1_112 325 794 1 112 325 794 A/G 1.49 7.48 3.79 3.73 0.27
Chr2_70 960 433 2 70 960 433 A/C 2.84 7.52 0.71 0.43 0.39
Chr2_84 580 144 2 84 580 144 A/C 7.64 5.31 7.73 8.49 0.22
Chr3_59 392 336 3 59 392 336 A/C 7.42 3.44 7.77 8.55 0.11
Chr3_104 419 739 3 104 419 739 T/C 9.23 8.27 9.03 10.15 0.40
Chr5_124 560 418 5 124 560 418 A/T 8.84 6.61 2.63 2.41 0.47
Chr6_6 118 754 6 6 118 754 G/A 0.35 7.60 7.49 8.20 0.33
Chr6_37 888 253 6 37 888 253 C/T 7.27 3.77 2.24 1.98 0.23
Chr6_96 529 106 6 96 529 106 C/A 3.41 7.59 2.59 2.36 0.34
Environment: Yuma, AZ (AZ2018)
Chr1_86 682 272 1 86 682 272 A/G 4.16 6.42 5.00 5.09 0.36
Chr1_107 346 702 1 107 346 702 C/T 3.00 6.50 3.07 2.87 0.07
Chr3_1 063 790 3 1 063 790 C/T 5.04 7.58 7.81 8.48 0.06
Chr3_109 806 929 3 109 806 929 A/G 7.15 5.21 7.43 8.01 0.29
Chr4_8 877 221 4 8 877 221 A/G 6.52 3.02 6.89 7.34 0.10
Environment: Yuma, AZ (AZ2019)
Chr1_82 234 636 1 82 234 636 T/C 3.37 7.59 8.33 8.57 0.33
Chr1_106 911 346 1 106 911 346 T/C 6.71 1.20 8.57 8.85 0.05
Chr1_121 938 867 1 121 938 867 T/C 0.78 9.38 4.65 4.39 0.11
Chr1_125 641 693 1 125 641 693 G/A 0.91 7.11 5.47 5.29 0.05
Chr2_88 051 705 2 88 051 705 T/G 1.82 8.12 6.50 6.45 0.25
Chr2_100 140 397 2 100 140 397 A/G 1.79 6.50 2.15 1.75 0.27
Chr3_1 164 540 3 1 164 540 G/T 12.31 1.99 13.15 14.40 0.30
Chr3_3 285 068 3 3 285 068 A/T 7.24 3.44 3.55 3.20 0.10
Chr4_177 858 334 4 177 858 334 T/C 6.86 3.48 12.96 14.16 0.32
Chr6_148 149 807 6 148 149 807 C/T 1.04 6.92 9.35 9.77 0.05

aSNP name defined as SNP position on the chromosome. bFavorable alleles are in bold font. cLOD (-LOG10P) value, with P value from the BLINK, FarmCPU, and
GLM models in GAPIT 3 R package.

associated in CA2017 is 2.28 Mb away from Chr3_104 419 739
associated in CA2018SJB. Chr6_35 831 188 associated in CA2017
is 2.05 Mb away from Chr6_37 888 253 associated in CA2018SJB.
Chr1_86 682 272 associated in AZ2018 is 4.4 Mb away from
Chr1_82 234 636 associated in AZ2019. Chr1_107 346 702 asso-
ciated in AZ2018 is 0.43 Mb away from SNP Chr1_106 911 346
associated in AZ2019. Although in a large range of 0.43–5.04 Mb
between associated SNP markers, these regions appear stably
providing resistance against downy mildew pathogen. The
SNPs Chr1_121 938 867 and Chr1_125 641 693 associated with
AZ2019 are physically 3.70 Mb apart, SNPs Chr3_101 998 183 and
Chr3_106 700 307 associated with CA2017 were only 4.70 Mb apart,

and two SNP Chr1_108 831 990 and Chr1_112 325 794 associated in
CA2018SJB were 3.49 Mb apart, making these regions promising in
regulating field resistance against downy mildew pathogen. Some
of the associated SNP markers showed relatively large differences
in LOD values among the tested association models, and they
were not stable across the tested models, but many that showed
consistently higher LOD will be of value in molecular breeding
and are practical for marker-assisted selection.

Many associated SNPs reported here contain genes within a 50
Kb distance (Supplementary Table 3). Fourteen genes were less
than 2.5 Kb away from the associated SNPs, and eight overlapped
over the seven associated SNPs. Chr3_943 549 associated with
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Figure 5. GWAS of resistance to downy mildew evaluated in the field condition in Salinas, California, in 2017 (CA2017) and San Juan Bautista in 2018
(CA2018SJB). The Manhattan and QQ plots are presented for each of the four environment trials.

CA2017 is 11.3 Kb from SOV3g000980 (NB-ARC disease resistance
protein) and Chr3_1 063 790 associated in AZ2018 is 7.5 Kb
from SOV3g001030 (NB-ARC disease resistance protein). These
two genes (SOV3g000980 and SOV3g001030) encode NBS-LRR
proteins and are considered potential candidate genes to regulate
resistance to downy mildew pathogen in spinach [8, 10–12, 20].

In addition, another SNP Chr3_3 285 068 associated with
AZ2019 is 25.9 Kb from SOV3g003310 (putative disease resistance
protein) and 37.2 Kb from SOV3g003330 (Protein kinase family
protein), and the contribution of this SNP region to resistance
to downy mildew pathogen is reported for the first time in
spinach.
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Figure 6. GWAS of resistance to downy mildew evaluated in the field condition in Yuma, AZ, in 2018 (AZ2018) and 2019 (AZ2019). The Manhattan and
QQ plots are presented for each of the four environment trials.

Genomic prediction assessment
GP for resistance to downy mildew pathogen was performed for
all four environments with five-fold cross-validation using six
GS models and seven different marker sets: 88682 SNP datasets
and a random subset of 2000 and 500 markers, 12 K GWAS
associated SNPs set, a random subset of 2000 and 500 mark-
ers, and 41 GWAS associated SNPs, showed wide variations in

PA among models across thee environments and marker sets
(Table 3, Fig. 7).

Prediction accuracy with different genomic selection models
Average PA from 100 runs among the tested models for the
88 682 SNP set ranged from 0.41–0.48 for CA2017, 0.45–0.56
for CA2018SJB, 0.35–0.45 for AZ2018, and 0.60–0.68 for AZ2019
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Table 3. Genomic prediction (r-value) evaluated with six GP models for downy mildew resistance using different marker sets across
four environments

GP Model rrBLUP RF BA BB BL BRR Average
(All GP model)

Average (Bayesian
model)

Environment: Salinas, CA (CA2017)
88 682 mean 0.41 0.50 0.48 0.46 0.48 0.47 0.47 0.47

SE 0.009 0.010 0.009 0.010 0.008 0.010
12 098 mean 0.57 0.63 0.70 0.70 0.68 0.68 0.66 0.69

SE 0.007 0.008 0.006 0.006 0.008 0.007
random2000 mean 0.34 0.49 0.46 0.48 0.46 0.45 0.45 0.46

SE 0.011 0.009 0.008 0.008 0.009 0.008
random500 mean 0.25 0.50 0.47 0.49 0.47 0.45 0.44 0.47

SE 0.011 0.008 0.009 0.008 0.010 0.010
sigs2000 mean 0.48 0.60 0.64 0.64 0.64 0.63 0.61 0.64

SE 0.008 0.008 0.007 0.007 0.006 0.008
sigs500 mean 0.33 0.54 0.57 0.58 0.57 0.55 0.52 0.57

SE 0.011 0.009 0.008 0.008 0.009 0.008
sigs41 mean 0.24 0.64 0.71 0.72 0.71 0.71 0.62 0.71

SE 0.01 0.007 0.005 0.005 0.006 0.006
Average (SNP set) 0.33 0.49 0.50 0.51 0.50 0.49 0.47
Environment: San Juan Bautista, CA (CA2018)
88 682 mean 0.45 0.49 0.55 0.56 0.53 0.53 0.52 0.54

SE 0.008 0.011 0.009 0.009 0.01 0.009
12 098 mean 0.50 0.59 0.69 0.70 0.69 0.69 0.64 0.69

SE 0.007 0.009 0.007 0.007 0.006 0.006
random2000 mean 0.43 0.48 0.48 0.49 0.48 0.47 0.47 0.48

SE 0.008 0.009 0.011 0.009 0.009 0.01
random500 mean 0.26 0.45 0.47 0.47 0.46 0.44 0.43 0.46

SE 0.01 0.01 0.009 0.008 0.009 0.01
sigs2000 mean 0.44 0.58 0.63 0.62 0.62 0.63 0.59 0.63

SE 0.009 0.008 0.008 0.007 0.008 0.008
sigs500 mean 0.31 0.54 0.59 0.60 0.60 0.59 0.54 0.60

SE 0.012 0.008 0.007 0.008 0.007 0.008
sigs41 mean 0.14 0.50 0.57 0.58 0.58 0.57 0.49 0.58

SE 0.009 0.007 0.007 0.007 0.007 0.006
Average (SNP set) 0.36 0.52 0.57 0.57 0.57 0.56 0.53
Environment: Yuma, AZ (AZ2018)
88 682 mean 0.35 0.45 0.40 0.39 0.40 0.40 0.40 0.40

SE 0.011 0.011 0.01 0.01 0.01 0.009
12 098 mean 0.39 0.60 0.66 0.67 0.64 0.64 0.60 0.65

SE 0.011 0.01 0.007 0.007 0.007 0.008
random2000 mean 0.27 0.41 0.38 0.40 0.40 0.36 0.37 0.39

SE 0.011 0.011 0.01 0.011 0.008 0.011
random500 mean 0.25 0.39 0.38 0.37 0.37 0.36 0.35 0.37

SE 0.012 0.01 0.01 0.011 0.01 0.011
sigs2000 mean 0.23 0.54 0.53 0.54 0.52 0.52 0.48 0.53

SE 0.013 0.009 0.009 0.008 0.009 0.009
sigs500 mean 0.17 0.54 0.49 0.48 0.50 0.48 0.44 0.49

SE 0.013 0.009 0.008 0.008 0.008 0.01
sigs41 mean −0.12 0.39 0.46 0.46 0.48 0.45 0.35 0.46

SE 0.01 0.011 0.009 0.01 0.009 0.009
Average (SNP set) 0.22 0.47 0.47 0.47 0.47 0.46 0.43
Environment: Yuma, AZ (AZ2019)
88 682 mean 0.60 0.61 0.68 0.67 0.67 0.67 0.65 0.67

SE 0.008 0.01 0.007 0.007 0.008 0.007
12 098 mean 0.60 0.70 0.80 0.79 0.79 0.79 0.75 0.79

SE 0.008 0.007 0.004 0.005 0.005 0.004
random2000 mean 0.49 0.62 0.66 0.64 0.66 0.66 0.62 0.66

SE 0.009 0.01 0.007 0.007 0.006 0.008
random500 mean 0.35 0.60 0.60 0.59 0.60 0.61 0.56 0.60

SE 0.01 0.009 0.008 0.008 0.008 0.007
sigs2000 mean 0.64 0.68 0.75 0.76 0.76 0.75 0.72 0.76

SE 0.007 0.008 0.006 0.005 0.006 0.005
sigs500 mean 0.55 0.67 0.72 0.72 0.74 0.72 0.69 0.73

SE 0.008 0.007 0.006 0.006 0.006 0.007
sigs41 mean 0.11 0.67 0.64 0.66 0.68 0.66 0.57 0.66

SE 0.009 0.007 0.008 0.008 0.006 0.007
Average (SNP set) 0.48 0.65 0.69 0.69 0.70 0.69 0.65
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(Table 3). Similarly, for the 88 682 datasets, AZ2019 provided the
highest PA of 0.65, followed by CA2018SJB, CA2017, and AZ2018
with PA of 0.52, 0.47, and 0.40.

PA from the rrBLUP model ranging from 0.35 to 0.60 was con-
sistently lower in all four environments for 88 682 SNP datasets
than in other GS models (Table 3, Fig. 7). The random forest model
showed PA in the range of 0.45 to 0.61 for 88 682 SNP datasets
across four environments, which is slightly lower or comparable
to other Bayesian models. The PA from four Bayesian models, BA,
BB, BL, and BRR, was similar but higher than other models, with
the PA ranging between 0.39 to 0.68 for the 88 682 SNP datasets. On
the 88 682 SNP dataset and all other SNP datasets, PA was higher
for Bayesian models than the rrBLUP model. Thus, these Bayesian
models appear more appropriate for conducting GS for resistance
to downy mildew pathogen in spinach.

Comparing the average PA of the seven datasets for different
environments, rrBLUP averaged 0.33, 0.36, 0.22, and 0.48 for
CA2018, CA2018SJB, AZ2018, and AZ2019; meanwhile, the PA
from the RF model was 0.49, 0.52, 0.47, 0.65, respectively for
these environments (Table 3). The rrBLUP model provided the
lowest PA in all environments and marker sets. The PA of
four Bayesian models averaged 0.50, 0.57, 0.47, and 0.69 across
all four environments. In general, PA of the Bayesian models
was higher among the tested models in all environments and
across all marker sets and appeared to predict the resistance
to downy mildew pathogen with higher efficiency, although RF
models provided comparable PA. Interestingly, the PA obtained
using RF models was inferior to Bayesian models in large SNP
datasets (80 K and 12 098 SSNP set) but equivalent to or higher
for random subsets of markers (random2000 and random500).
Among the Bayesian models, the BB and BL predicted the
resistance to downy mildew pathogen with higher accuracy,
making them a more suitable choice to conduct GS to select for
resistance.

Effect of different marker sets on prediction accuracy
GP models were tested using seven different marker sets to deter-
mine if a small number of markers could achieve comparable
PA as the full datasets. Based on the higher predictive ability
of Bayesian models over others, the results in this section are
presented as the mean PA across Bayesian models only.

GP performed using full 88 682 SNP dataset resulted in PA of
0.47, 0.54, 0.40, 0.67 in CA2017, CA2018SJB, AZ2018, and AZ2019
(Table 3). The predictability of the full 88 682 datasets was lower
than the significant 12 098, sig2000, and sig500 marker sets
(Table 3, Fig. 7). Interestingly, GWAS-associated 12 098 marker
set showed an average PA of 0.69, 0.69, 0.65, 0.79 in CA2017,
CA2018SJB, AZ2018, and AZ2019, providing consistently higher PA
in all locations except CA2017, where the 41 SNP sets exceeded
all other marker sets (Table 3, Fig. 7). PA from random2000 was
higher than random500 in all evaluated environments. But,
both the random marker subsets yielded lower PA than the
sig2000, sig500, and 88 682 SNP sets in all environments. The
PA of sig2000 marker set ranked second in CA2018SJB (r = 0.63),
AZ2018 (r = 0.53), and AZ2019 (r = 0.76) and ranked third in CA2017
(r = 0.64). Similarly, the PA of the sig500 marker set was 0.57,
0.60, 0.49, and 0.73 for CA2017, CA2018SJB, AZ2018, and AZ2019
environments, respectively. Sig41 was higher or equivalent to
random500 and random2000 marker sets based on Bayesian
models across all environments. Further, the sig41 marker set
(r = 0.71) outperformed all other marker sets in CA2017, and it is
still reasonable to use this marker set in GS based on PA obtained
in other environments (Table 3, Fig. 7).

Excluding the 88 682 SNP sets, decreasing the number of mark-
ers reduced PA in both subsets of random and GWAS-associated
markers. A random marker set without incorporating GWAS-
associated SNPs resulted in lower PA, while the inclusion of GWAS-
associated SNP increased prediction power, even when just 41
GWAS SNP was used. Overall, PA of sig2000, a subset of GWAS
markers, remained high and is the best marker set; thus recom-
mended to use this set, as it provides adequate PA for all locations,
compared to a large number of 12 098 SNP set. Nevertheless, the
PA obtained from sig500 and sig41 is good enough to predict
resistance to downy mildew pathogen with a slight reduction in
prediction potential (0.64 and 0.57 vs. 0.71 in CA2017, 0.63 and
0.60 vs. 0.58 for CA2018SJB, 0.53 and 0.49 vs. 0.46 for AZ2018, 0.76
and 0.73 vs. 0.66 for AZ2019), and these small SNP sets appear to
be cost-effective compared to genotyping a more extensive set of
2000 or more markers (Fig. 7).

Discussion
Downy mildew field resistance in spinach
germplasm
Downy mildew has been the most devastating disease of spinach
worldwide, particularly in the Salinas Valley in California and
the arid regions of California and Arizona in the United States,
representing over 90% of the US spinach production. Due to the
high-quality standards of spinach, less than 2% of the crop with
downy mildew symptoms is typically tolerated. A number of RPF
alleles have been identified that have a major gene effect on
various races of the spinach downy mildew pathogen (Correll
et al., 2011). However, new races are continually overcoming the
genetic resistance deployed in the newer cultivars (Correll et al.,
2011; Feng et al., 2018b; Bhattarai et al., 2020). Disease resistance
to the downy mildew pathogen is even more critical for organic
spinach production as it represents the only effective disease
management tool. Organic spinach production represents approx-
imately 50% of the total spinach production in the United States,
thus necessitating disease-resistant cultivars. The ability of the
pathogen to overcome the major resistance genes in spinach
has provided the impetus for the characterization of quantitative
resistance and identifying QTLs with minor effects to further
manage downy mildew disease by combining both qualitative and
quantitative host genetic resistance.

Towards achieving the aim of utilizing genetic resistance in
downy mildew disease management, the spinach germplasm
panel was evaluated for resistance to the downy mildew pathogen
under field conditions with natural disease pressure in five
environments over two years and in two major spinach producing
regions in the US: Salinas, California and Yuma, Arizona. A
wide range of continuous downy mildew disease responses
was observed among the accessions in all experimental trials,
reflecting the substantial genetic variation in the evaluated
panel. In addition, the disease response was highly variable
across environments, with the Pearson correlation coefficient
ranging between 0.03–0.52 between environments. During the
field experiments, it is likely that the pathogen population was
composed of multiple races and novel strains of the downy
mildew pathogen in the various locations [3, 55]. A similar large
variation in disease severity was observed among the commercial
cultivars that were screened in the same locations in different
trials [51–53]. Contrarily, field resistance evaluation of lettuce
germplasm panel against downy mildew pathogen Bremia lactucae
reported relatively stable disease response across locations and
years and identified QTLs associated with the resistance via
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Figure 7. Prediction accuracy estimates following five-fold cross-validation implemented in six GP models for resistance to downy mildew evaluated
in field conditions in Salinas, CA (CA2017), San Juan Bautista (CA2018SJB), and Yuma, AZ in 2018 (AZ2018) and 2019 (AZ2019). Prediction accuracy was
calculated for seven marker datasets for disease scores from each environment.

GWAS approach [21]. This study aimed to identify germplasm
with higher levels of resistance to the downy mildew pathogen
across all tested environments. However, only a few accessions (PI
433210, Califlay, PI 648950, PI 173130, PI 165560, PI 677109, Whale,
PI 169679, PI 173809, NSL 81328, NSL 32678, Boeing, PI 166366, PI

274046, NSL 184379, and PI 531456) showed relatively stable high
resistance across tested environments (Fig. 4). In contrast many
others showed variable response between environments. Indeed,
the lines that appeared to be more stable in the reactions in this
study could be used to introgress beneficial alleles to improve
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resistance against downy mildew pathogen. However, some of the
lines tested contain known RPF genes effective against particular
races of P. effusa. Further, the intermediate to high heritability
estimates obtained in this study for each environment suggests
that a high portion of the downy mildew disease variation among
the genotypes was genetically controlled and indicates potential
breeding prospects and genetic improvement following breeding
and selection.

The GWAS panel was evaluated across a highly heterogeneous
environment for downy mildew disease pressure and pathogen
races, which resulted in a variable disease rating of spinach
accessions across environments, and led to high GxE and low
to moderate heritability. Such differential disease reactions and
high GxE interactions are common for disease resistance traits
because the predominance of pathogen populations continually
varies across environments, as discussed by others [19]. Different
environmental conditions fluctuate downy mildew pathogen
pressure, and the predominance of pathogen races widely
varies at each location, leading to a wide variation in disease
response across years and locations [3, 4, 6, 56]. Thus, the
downy mildew disease response data across environments were
independently used for GWAS and GS and tested with multiple
association models to increase the confidence of associated
SNPs.

Genomic regions controlling downy mildew field
resistance
A set of 41 SNPs, distributed on all six spinach chromo-
somes, were associated with the field resistance to the downy
mildew pathogen from four environments (Table 2). Some SNPs
(Chr3_943 549 and Chr3_1 063 790), associated with the field
resistance, are located near the known RPF loci in the proximal
end of chromosome 3, consistent with previous mapping studies
[8, 10–12, 20] that have localized the resistance region via
QTL and association mapping approaches. Most of the other
associated SNP markers identified in this study were located
in the chromosome regions not previously reported, and many
associated SNPs were less than 5 Mb apart within/across
environments. These novel SNPs and QTLs associated with
resistance to the downy mildew pathogen may be valuable
for future breeding efforts. The medium -log10(P) and R square
values of the SNPs associated with the resistance to the downy
mildew pathogen under natural inoculum pressure might be
due to a small number of markers used in this study, or the
associated SNPs were further apart from the candidate loci. There
is a potential to pyramid effective QTLs identified from field-
evaluated spinach germplasm with major RPF genes to provide a
more broad-spectrum and durable resistance against the downy
mildew pathogen [57–59].

The resistance QTL and associated SNP markers are suitable for
MAS as direct selection markers or flanking markers to develop
more closely linked markers. Meanwhile, the identified QTL are
proposed for validation in additional populations and environ-
ments. However, the disease responses across locations lack sta-
bility, so the associated QTLs and some of the associated SNP
markers were inconsistent across the tested models. The GWAS
analysis from multiple environments suggests a complex genetic
basis of field resistance at each tested environment and exten-
sive GxE interactions. This lack of detecting stable QTLs across
environments may be due to the influence of a genetically diverse
pathogen population, level of disease pressure, and environment
over years and locations [19, 60–62]. Indeed, quantitative disease
resistance is often challenging to evaluate for disease incidence

and severity under field conditions [19, 63]. Thus, identifying
linked loci and subsequent gene introgression in the breeding
lines may remain an ambitious plan when both qualitative and
quantitative genes are the target of selection.

Assessment of genomic prediction accuracy
GS has recently been evaluated in spinach for white rust resis-
tance [36] and some other phenotypes are being assessed for GS in
spinach [56], including this downy mildew field resistance study.
Implementing GS will be a practical and attractive option depend-
ing on low-cost genotyping resources and highly accurate multi-
environment phenotype datasets that provide increased PA. The
GS prediction models have different assumptions to treat marker
effects, so the PA differs based on the phenotype and genetic
architecture of the trait. GP was explored to determine PA for
resistance to downy mildew using six GP models involving para-
metric models (rrBLUP, BA, BB, BL, and BRR) and non-parametric
models (RF). Overall, Bayesian models showed consistently higher
PA followed by the RF model. But the rrBLUP showed low PA
in all tested environments, possibly because of a lack of strong
population structure and large effect QTLs in spinach panels [35,
64, 65]. The PA corresponded to the heritability estimates for each
environment, indicating the worth of additive genetic variance in
estimating GEBV, as reported in previous studies [31, 39, 65, 66].
Bayesian models provide higher PA for traits controlled by a few
major QTLs with large effects [64], while the rrBLUP considers
equal variances of all markers and incorporates genetic relation-
ships, and low PA was reported for some traits in previous studies
[35, 67]. The higher PA of Bayesian models and lower PA of rrBLUP
for downy mildew field resistance appears to be because of large-
effect QTLs associated with resistance in this study, as reported in
the GWAS section. The GWAS panel comprised 7 to 9 differentials
cultivars in all environments and around 35 commercial cultivars
in AZ2018 and AZ2019. These cultivars contain the RPF alleles and
are resistant to some of the races of the downy mildew pathogen,
which have led to SNP associations in the 0.9–1.2 Mb region of
Chromosome 3 (in CA2017, AZ2018, AZ2019) known to harbor
the RPF genes. Thus, high PA was obtained for Bayesian models
because of the presence of major QTLs in the training set of this
study.

Additionally, PA was investigated using seven different sets of
markers to identify small marker subsets that can effectively
predict the breeding value. PA of the 88 682 SNP set was lower than
the 12 098 set, which may be due to the overfitting of the GS model
for the large number of SNPs in the 88 682 dataset. A recent study
reported a similar conclusion when both major and minor QTLs
were incorporated for stripe rust resistance in wheat [63]. PA for
a more extensive marker set was higher for both the random and
significant marker subsets, but still, the increment was minimal
between marker numbers of 2000 and 500 (difference of 0.02
between random2000 vs. random500 and of 0.04 between sig 2000
vs. sig 500). The GWAS associated SNP set showed improved PA for
all locations. At the same time, a relatively small number of GWAS
markers estimated comparable prediction as that of the full set as
the use of 2000 GWAS SNP achieved similar PA as using 12 K SNP
(0.69 vs. 0.64 for CA2017, 0.69 vs. 0.63 for CA2018SJB, 0.65 vs. 0.53
for AZ2018, and 0.79 vs. 0.76 for AZ2019), as this allows using a
small marker set with minimal effect on predictive ability. Such
comparable PA obtained from a small SNP panel is attractive for
adoption as it minimizes the cost of genotyping and favors the use
of a small number of GWAS associated SNP in GS. Overall, smaller
sets of markers associated with the QTLs show improved PA in
all GS models; thus, identifying effective QTLs associated markers
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and using them will facilitate the practical implementation of GS
in breeding programs. We did not test and evaluate the optimum
number of the training population sizes in this study, but another
GS study on white rust resistance in spinach found that changing
the training and testing size from 2 to 10 fold does not make much
difference in PA [36].

This study aimed to identify field resistance to the downy
mildew pathogen under a natural disease pressure, identify and
map the partial resistance governed by the putative QTL, and eval-
uate prediction accuracy performance using multiple GP models.
Quantitative resistance, controlled by multiple genes with a small
effect, is often affected by environmental factors (temperatures,
moisture, pathogen populations) and hence is challenging for a
breeder to utilize GP for such genes or loci [19]. GS is continually
being optimized and appears to be a more effective selection
method for quantitative traits governed by small to large effect
loci and possibly in the presence of major loci [19, 63]. Field
resistance to the downy mildew of spinach is genetically complex,
regulated by some major loci and several minor loci in providing
resistance. This study finds the prediction accuracy in a range
of 0.65–0.79 using 12 098 SNP markers (selected from GWAS step
1) and 0.53–0.76 with sig2000 SNP markers (selected 2000 GWAS
markers) in the four environments, demonstrating a moderate to
higher prediction accuracy for the resistance to downy mildew
with a relatively small number of marker sets. GP evaluated for
many disease resistance traits in other crops reported PA in the
range of 0.4 to 0.8 [62, 68–70]. Despite the challenges, a systematic
approach of screening for new resistance genes and deployment
of the most promising R genes and QTLs in a combination, using
GP models as reported in this study, may allow the development
of potentially more durable resistant cultivars.

Conclusions
The resistance to the spinach downy mildew pathogen was eval-
uated under field conditions across multiple environments. The
GWAS analysis indicates the presence of several moderate effects
QTL, which can provide moderate levels of resistance. We identi-
fied 14, 12, 5, and 10 SNP markers (LOD value above 6.25) signifi-
cantly associated with resistance to the downy mildew pathogen
in one of the tested GWAS models from CA2017, CA2018SJB,
AZ2018, and AZ2019 trials, respectively. Some of the associated
SNPs were within the known genomic regions where major genes
for resistance have been located on the proximal end of chro-
mosome 3, particularly 7.5 and 11.3 Kb from SOV3g001030 and
SOV3g000980 encoding NBS-LRR proteins [20]. Bayesian models
performed better in predicting GEBV across all environments.
Prediction accuracy from the full 88 682 SNP set (average PA of
the Bayesian models across all environments was 0.52) was lower
than other datasets. The use of GWAS-associated small subset
of SNPs comprising sigs2000, sigs500, and sigs41 showed PA of
0.64, 0.59, and 0.60, which was lower but comparable to the
highest predicting set of 12 098 SNPs with PA of 0.71, providing
a more attractive option of using small sets of markers in GP to
improve spinach for resistance to the downy mildew pathogen.
The identification and utilization of quantitative resistance in
spinach may help reduce disease pressure and may help delay
the time it takes for the pathogen to overcome the deployed
major genes for resistance. Evaluation and quantification of the
genetic variation of germplasm collections for resistance to the
downy mildew disease pathogen and further identification and
validation of molecular markers may enhance the efficiency of
developing spinach cultivars with improved durable resistance.

Understanding spinach-downy mildew pathogen interaction, the
virulence evolution of the downy mildew pathogen, and the func-
tional characterization of genetic resistance are some of our
targeted approaches to advancing molecular-genomic resources
toward implementing genetic resistance. This study generated
new information and molecular resources to breed spinach with
improved resistance to the downy mildew pathogen.

Materials and methods
Plant material
The spinach association panel used in this study comprised
434 spinach genotypes, including 381 USDA accessions and
53 commercial cultivars. The USDA accessions were obtained
from the germplasm repository at the North Central Regional
Plant Introduction Station (NCRPIS), USDA-ARS, Ames, IA. The
spinach germplasm used in this study was initially collected
from 34 countries with ten or more accessions from Turkey,
the US, Afghanistan, Macedonia, Iran, China, India, Belgium,
and Syria (Supplementary Table 1). The worldwide distribution
of these germplasm panels presents a wider phenotypic variation
on economically important traits, as documented for several
phenotypes in the USDA GRIN database. Around ten seeds per
genotype were sown in pots in the greenhouse at the University
of Arkansas and bulked for DNA extraction and sequencing.

Downy mildew field trails and phenotype
evaluation
The diverse spinach panel was screened for downy mildew disease
severity in the field condition under natural inoculum pressure
for two years at the USDA research station in Salinas, CA, defined
the two experiments as CA2017 and CA2018, two years at the
Yuma agricultural center, the University of Arizona, AZ, defined as
AZ2018 and AZ2019, and one year at the Seminis vegetable seeds
research station in San Juan Bautista, CA, defined as CA2018SJB.
Field evaluation trials were conducted from September–October
in CA and January–March in AZ. These experimental areas are
the major commercial spinach production regions in the US and
present high pathogen pressure and favorable environmental
conditions for disease development every year. Spinach genotypes
were planted in a single row with 15–30 seeds in a randomized
complete block design with two replications for each experimen-
tal trial. Each plant row was 1.5 m in length and 0.3 m between
rows. Plants were watered 2–3 times a week with overhead sprin-
klers during the experimental trial. The cultivar Viroflay, suscep-
tible to all known races of P. effusa, was planted in the border rows
vertical to the test rows.

Individual plants for each genotype were visually scored for the
presence of signs and symptoms of downy mildew between 35–
45 days from planting. Individual plants were scored for disease
severity (DS) on a 0–100% scale, representing the total percentage
of infected leaf area, with 0% meaning no symptom and 100%
representing complete infection in all environments except in
AZ2018. In AZ2018, disease incidence (DI) was scored by row
(recording the number of infected vs. clean plants). We did not use
disease response from the CA2018 trial because of the low disease
severity rating across the evaluated panel.

Phenotype data analysis
Disease scores from each experimental trial were analyzed inde-
pendently to account for large genotype-by-year interactions as
the predominance of races and pathogen pressures vary among
years and locations. The random effect model was fitted to the
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mean disease score by considering genotype and block as random
factors using the lme4 package implemented in META-R v6.0.4
(Alvarado et al., 2020). The BLUPs values were obtained as

Yij = μ + Repi + Genj + εij

where Yij is the phenotype, μ is the mean effect, Repi is the effect
of replicate i, Genj is the effect of genotype j and εij is the residual
error. The BLUPs values from this model for each experiment
trial were used as the phenotype dataset in association analysis.
Broad-sense heritability on a genotype-mean basis was calculated
using the variance component estimates from the same model, as

H = σ2g

σ2g + σ2e
nRep

where σ 2g is the genetic variance and σ 2e is the prediction error
variance, and nRep is the number of replicates.

Sequencing and SNP calling
Genomic DNA was extracted with Omega MagBind Plant DNA DS
kit (Omega Bio-tek Inc., Norcross, GA, USA) in an automated King-
Fisher Flex extraction system (Thermo Fisher Scientific, Waltham,
MA, USA). Extracted DNA was quantified using a Qubit Flu-
orometer and sample integrity was tested on 1% agarose gel
electrophoresis. Paired-end sequencing libraries for 480 spinach
accessions were created and sequenced on Illumina NovaSeq at
Beijing Genome Institute (BGI). The whole genome resequencing
(WGR) was pursued to generate around 10 Gb sequence reads
per sample, approximating 10x genome coverage. Variants were
called by mapping the sequence reads to Monoe-Viroflay refer-
ence genome [20] using the Illumina Dynamic Read Analysis for
GENomics (DRAGEN) pipeline (v 3.8.4). SNP variants were initially
filtered using BCFtools [40] for a minimum coverage depth of
6, minimum genotype quality of 10, and minor allele frequency
(MAF) of 0.05. This filtering resulted in 4.92 million SNPs across
470 spinach accessions, of which six chromosomes contained 4.88
million SNPs.

Next, SNPs from six chromosomes were extracted and further
filtered using BCFtools to remove monomorphic SNPs, keep only
biallelic SNPs, and remove indels and SNPs within 10 bp of indels
using BCFtools. Variants were filtered for more than 20% missing
calls using BCFtools and genotypes above 50% missing rates using
VCFtools that removed four individual lines. Variants data for
466 spinach genotypes were then filtered for heterozygosity >60%
and > 10% missing calls.

Again, SNP data for 434 genotypes with phenotype data avail-
able in this study were extracted and filtered for heterozygos-
ity >50%, retaining 2.91 million SNPs as the first GWAS vari-
ant dataset. A thinned SNPs dataset containing 76 951 SNP was
extracted from the first GWAS dataset by removing SNPs within
10 Kb using VCFtools and merged with 12 098 significant SNPs
identified from the first GWAS analysis (see GWAS section below).
This final filtered dataset containing 88 682 unique SNPs among
434 spinach genotypes was used for genetic diversity and GWAS
analysis in this study.

Population structure and genetic diversity
PCA and genetic diversity analyses were performed using the
88 682 SNPs in GAPIT 3 [41,42] programs by setting PCA and NJ tree
=2. Two clusters were chosen based on previous reports using GBS
and WGR derived SNPs in similar sets of USDA spinach accessions

[36, 43]. An unweighted neighbor-joining (NJ) tree was drawn in
GAPIT 3. LD was computed and plotted with all SNP pairs within
a 500 Kb window using PopLDdceay v3.41 [44]. Linkage disequilib-
rium decay was estimated as the distance the Pearson correlation
coefficient (r2) dropped to half of the average maximum r2 value.

Association analysis and candidate gene search
Initially, GWAS was performed using 2.91 million WGR generated
SNPs and the phenotype scores from four environments using
single marker regression (SMR), general linear model (GLM), and
mixed linear model (MLM) in TASSEL 5.2.74 Linux command line
[45]. Inbuilt principal components and kinship matrices were used
to run SMR, GLM and MLM models in TASSEL. Significantly asso-
ciated SNPs were selected with the threshold of LOD (−log10(P))
value >4 in the MLM model, 5–8 in GLM, and 6–10 in SMR models
from all four environments (Supplementary Table 2), and the LOD
value differences were used to adjust different numbers of SNPs
showing significance across environments.

A new SNP dataset (88 682 SNP sets) was created for second
stage GWAS by keeping 10 Kb thinned SNPs sets plus the unique
significant SNPs identified from the first GWAS. GWAS was per-
formed for the second time using the 88 682 SNPs using the
BLINK [46], FarmCPU [47], and GLM model in GAPIT 3 [41, 42].
Significant SNPs were determined using a Bonferroni threshold
of 0.05 (LOD > 6.25) for BLINK and FarmCPU models. The LOD
and R2 values of the associated SNPs in the former two models
were extracted from the GLM model and reported. The BLINK
model uses iterations to select a set of markers associated with
the trait in which the associated markers are fitted as a covariate
for testing the remaining markers and is known to have higher
statistical power than GLM, MLM and FarmCPU models [46].

Genes were searched for GWAS associated SNPs for all environ-
ments within 50 Kb on either side of the Monoe-Viroflay assembly.
Predicted functions for genes in the vicinity of associated SNPs
were reported, emphasizing genes predicted to provide disease
resistance in plants.

Genomic selection
GP was assessed using six different GS models and seven sets
of marker datasets for resistance to downy mildew pathogen
for each tested environment (CA2017, CA2018SJB, AZ2018, and
AZ2019) to identify best performing models and marker sets.
The GS models were ridge regression best linear unbiased pre-
diction (rrBLUP), random forest (RF), and Bayesian models Bayes
A, Bayes B, Bayesian LASSO, and Bayesian ridge regression (BRR).
The rrBLUP was fitted using the rrBLUP R package [48], and RF
model with 100 decision trees was run using the Random Forest R
package [49], and the Bayesian models using the BGLR R package
with 3000 iterations and 1500 burn-in [50].

GP was performed following a five-fold cross-validation
scheme where individuals are randomly assigned into five groups,
of which four groups are retained as the training set (80% of
individuals), and the remaining fifth group (20% individuals)
serves as the validation set to predict genomic estimated breeding
values (GEBV). The cross-validations were replicated 100 times
and prediction accuracy (PA) was determined by averaging the
Pearson correlation coefficient (r) between predicted GEBV values
obtained from five-fold cross-validations and observed phenotype
values in the validation set.

GP was further assessed using seven marker sets for all six
models to determine the optimum number of markers to obtain
high PA for resistance to downy mildew pathogen. The first
marker set was the 88 682 SNPs used for GWAS analysis, and
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the second set contained 12 098 SNP markers associated with
resistance to downy mildew pathogen across tested environments
in the first GWAS analysis. The other two sets, random2000 and
random500, are subsets of random 2000 and 500 SNPs from the
88 682 SNP sets. Similarly, sig2000 and sig500 comprise random
2000 and 500 SNPs from the 12 098 SNP set. And the sig41
contains the significantly associated SNPs identified from the
GWAS analysis (see GWAS result below).
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